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Abstract—An echo state network with improved topol-
ogy (IESN) is proposed for accurate and efficient time series
prediction. In this approach, a tighter bound of the echo state
property related to the Lipshitz constant of reservoir activa-
tion function and the maximum structured singular value of
reservoir is firstly researched to run the model at the edge of
chaos. A smooth composite reservoir activation function is
then designed to enhance the ESN. The exact echo state prop-
erty bound is solved by computing the Lipshitz constant of the
composite function. Finally, a decoupling matrix with eigen-
values distributing uniformly in the complex plane is built
as the reservoir for abundant dynamic characteristics. Six
classical benchmarks are employed to test the IESN. Besides,
combined with amplitude-frequency separation based on the
Hilbert transform, the IESN predicts a set of engine vibration
signals in knock. Compared with several popular models, the
proposed IESN shows the best performance.
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I. INTRODUCTION

IME series prediction is crucial in many natural science

and engineering technology fields. As an important appli-
cation, vibration signal prediction has been widely used in the
health monitoring of the machinery system [1]. The vibration
signal usually has strong nonlinearity, and reconstructing the
nonlinear system by measured data to predict subsequent
time series is a great challenge [2]. With the development of
computer theory, machine learning gradually gets gratifying
nonlinear fitting capability and becomes a promising direction.
Nevertheless, the accuracy and efficiency of the prediction
model have always been difficult to balance.

Support vector machine (SVM) is a classical machine
learning algorithm, which is also called support vector regres-
sion (SVR) when applied to time series prediction. The
SVM maps data into high-dimensional space by a kernel
function to implement regression analysis. The SVM’s kernel
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function and control parameters significantly influence the
result, leading to the heuristic algorithm such as particle swarm
optimization (PSO) [3] being widely employed to optimize
it. Furtherly, training the SVM is a constrained optimization
problem whose iterations consume much memory space and
time. The large-scale sample set is also a great challenge for
the SVM, so the artificial neural network (ANN) is introduced
as another powerful tool. Multilayer perceptron (MLP) is a
typical feed-forward ANN used for time series prediction.
However, its simple frame is difficult to capture the subtle
feature accurately, and the multistage hybrid model [4] is a
practical improvement. The complicated training promotes the
extreme learning machine (ELM) as an alternative [5], whose
main characteristic is part of the weights in the model are
generated randomly and fixed in training. The ELM plays a
role in forecasting sequence [6] because of the high efficiency,
whereas feed-forward ANNs have unavoidable defects for
the lack of memory. The recurrent neural network (RNN)
recurses sequence data by chain-connected nodes to obtain
the short-term memory capacity and is especially suitable
for time series analysis. Elman neural network (ENN) is a
classical type of RNN [7], which uses delay operators to
record the output of the hidden layer in the last time step.
In applications, the two-stage structure [8] can often lead to
an accurate ENN model. However, the ENN is disturbed by
gradient vanishing and explosion in long-term time series pre-
diction. As developments of the RNN, long short-term mem-
ory (LSTM) and gated recurrent unit (GRU) adopt a gating
mechanism to alleviate the long-term dependence problem [9].
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The two models have been widely employed in engineering
signal prediction, such as monitoring degradation trends of
the gears [10], [11] and bearings [12]. Signal processing
algorithms are often combined with the RNN to improve com-
plex time series prediction accuracy. Recent studies indicate
the time-varying filter-based empirical mode decomposition
(TVF-EMD)-ENN [13], ensemble EMD (EEMD)-LSTM [14],
and variational mode decomposition (VMD)-GRU [15] are
feasible methods. However, the above ANNs are trained by the
gradient descent algorithm, which requires extensive training
data for convergence and is prone to local optimum. Further-
more, the backpropagation (BP) algorithm, especially the BP
through time (BPTT) in RNNs, leads to an inefficient training
process.

As a unique type of the RNN, the echo state network
(ESN) [16] takes a randomly generated reservoir, instead of
neurons, as the basic processing unit. Besides, only output
weights are trained by simple linear regression to avoid
local optimum and improve efficiency. These advantages of
structure and training process promote its applications for
time series prediction in various fields [17], [18], whereas
the research of the ESN is not yet mature. Unlike tradi-
tional ANNSs, the ESN is built by a reservoir with special
dynamic characteristics, which is difficult to optimize by
various modules. The randomly generated topology causes
uncontrollable dynamics, and its design is still in dispute.
Due to the complicated dynamics of the ESN, combining
the ESN with other methods, such as employing a heuristic
algorithm to optimize hyperparameters [19] or taking another
ANN as the pretreatment model [20], is a popular solution.
However, additional algorithms can not improve the ESN
topology fundamentally; furthermore, complex structures neg-
atively affect the prediction efficiency. Based on the compre-
hensive analysis of Jaeger et al. [21], the reservoir shows a
crucial role in memory capacity and generalization. Therefore,
instead of the randomly generated reservoir, Wang et al. [22]
employed intrinsic plasticity (IP) algorithm to adjust reservoir
weights for information maximization, and Qiao et al. [23]
proposed an ESN with the growing reservoir (GESN) by
singular value spectrum. The IP-ESN and GESN use the
neuro-evolution algorithm to search for the best reservoir with
abundant dynamic characteristics, whereas they lose ESN’s
original advantage of simple training. Designing an improved
reservoir based on the dynamic characteristic analysis is an
alternative. Gallicchio et al. [24] analyzed the reservoir by
the entropy of recurrent unit activations to build a stacked-
layers ESN. For compact structure, Zhang et al. [25] developed
the decoupling method to design a simple reservoir structure.
Besides reservoir, Buehner ef al. [26] derived a tighter bound
for the echo state property, and Zhao et al. [27] used ridge
regression to train the ESN. However, the simple reservoir
structure is not universal because it has strict requirements for
operating conditions, which is difficult to achieve in practice.
The tighter bound of the echo state property is not applicable
for the most widely used leaky integrator ESN [21] and does
not take the reservoir activation function into account. Based
on the above analysis, current researches lack universality and
systematicness.

Developing the fundamental topology to improve the accu-
racy of the ESN under high training efficiency is essential
for time series prediction. An ESN with improved topol-
ogy (IESN) is proposed based on optimizations of echo state
property bound, reservoir activation function, and reservoir
structure. The main contributions are as follows:

(1) A universal tighter echo state property bound is proposed
to run the leaky integrator ESN at the edge of chaos.

(2) A composite reservoir activation function is designed to
enhance the ESN. An exact echo state property bound is then
computed based on the function.

(3) A reservoir with abundant dynamic characteristics is
designed by uniformly distributing eigenvalues in the complex
plane, and it has an efficient building process due to the non-
iterative method.

(4) The amplitude-frequency separation based on the Hilbert
transform is introduced to improve the accuracy of the IESN
in high-frequency vibration signal prediction.

This paper is organized as follows: Section I introduces
the research background and significance. Section II describes
the fundamental theory of the ESN. The echo state property
bound, reservoir activation function, and reservoir structure are
optimized in Section III. In Section IV, the IESN is tested
by six benchmarks and a set of engine vibration signals.
The IESN is further analyzed and discussed in Section V.
Conclusion and outlook are given in Section VI.

Il. FUNDAMENTAL THEORY

The ESN is also described as reservoir computing because
it takes a randomly generated reservoir as the basic processing
unit. The reservoir is a sparse matrix activated into rich internal
states to describe input signals by linear combination. In train-
ing, only output weights are adjusted by linear regression,
avoiding local optimum and improving efficiency.

Suppose u = {uy,uz, - ,u,} is the n-dimensional input
signal, x = {x{,x2,---,xn} the internal state, and y =
{y1, ¥2, -+, ym} the m-dimensional output signal. The internal
state at the (# + 1)-th time step is:

x(t+1) = f(Wiut + 1)+ Wx(@) + Wy (t)) (1)

where Wi, is the input weight matrix, W the reservoir, Wy, the
feedback weight matrix, and f(-) the reservoir activation
function.
The leaky integrator ESN is the most frequently used
variant:
x@+ 1) =0 —=ay)x@) +yf Wipu(t+1)
+Wx (D) + Wry(@)  (2)

where a is leaky rate and y the gain. In general, y = 1 and
Wi =0 [21]:

x@+1)=0Q—-a)x@®) + f Wipu@t + 1)+ Wx(@) 3)
The output is:
y(t) = g(Woulx (1); u(®)]) 4

where Wy is the output weight matrix, and g(-) the output
activation function.
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The Wy is trained by linear regression, and its objective
function L(-) is:

~ 2
LWou) = |87 () = Woulx: ul| 5)

where ||+, is the Lp-norm and g’l(o) the inverse function
of g(-). R

The estimated output weight matrix Wy could be solved
by:

Wou = & s ul¥ = g7 o) (Loc; ] TLx; ul) " s )™ (6)

where the superscripts ¥ and T represent the pseudo inverse
and the transpose of the matrix, respectively.

The echo state property is the base of precise results in the
ESN, and it is usually ensured by the condition [21]:

p=plW+(1-a)] <1 (7

where p is named as the effective spectral radius. p is
the spectral radius, i.e., the maximum value of eigenvalues’
magnitudes and / the identity matrix.

I1l. ECHO STATE NETWORK WITH IMPROVED TOPOLOGY

The echo state property, reservoir activation function, and
reservoir structure are optimized in this section. On this basis,
an ESN with improved topology (IESN) is proposed.

A. Tighter Bound of Echo State Property

The echo state property requires a reservoir with asymptotic
stability. Suppose x; and x; are different internal states and
¥+ = x; — X;. The ESN has the echo state property if
tl;rg() ly:Il = O for all right infinite input sequences u™°°.
Running the ESN at the edge of chaos could obtain high
prediction accuracy. Whereas (7) is a conservative sufficient
condition, and the echo state property may also be achieved by
p > 1 [28]. Besides, it is not applicable for various reservoir
activation functions. Therefore, a tighter bound of echo state
property with universality for the leaky integrator ESN is
proposed.

In particular, the theorem that all finite-dimensional norms
are equivalent in the Banach space is the basis and frequently
used in the following derivation. Suppose ||-||p is a operate
norm and the operate D is a matrix with a specific structure
in the field F. The echo state property condition can be
transformed as tl;rgo ly:llp = 0.

Iye+illp = llxe+1 — Xet1llp
= I[(1 = a)x; + f (Winttr41 + Wxo)] — - -
(A —a)x; + f(Winue1 + Wil p
= [[(1 —a)(xr — X¢) + [f Winttr 1 + W)
—f Winus1 + W)l p
< (I —=a)llxr = Xllp + I f Winug 1 + Wxy)
— f (Wit + Wil p (3

Based on the Lipschitz continuity, there is a Lipshitz
constant S making |f(x,-) - f(xj)| < S|x,- —xj|, Vx € R.

Therefore, (8) is derived to:

Iyitillp = (L =a)lIyilip
+ SN (Winur+1 + Wx)-(Winur 41 + WXl p
= =a)lyllp +SIWx; — Wil p
=1 =a)lydllp +SIWyllp
= =a)llydlp+SIWlpllylp ©)

Suppose z (z # 0) is an N-dimensional vector that z =
D~'v. The operate norm ||| is derived to:

Wzl I DWz|| DWD™ 1y
[Wlilp = sup b _ 2 _ ” I,
=0 lzllp 220 1Dzl w20 loll,
=5(DWD™) (10)

where ¢ represents the maximal singular value and sup the
supremum. The D is a nonsingular matrix, so v # 0.
Equation (9) can be derived to:

yerillp < A =a) llyillp + S6(DWD ™) lIyilip

=[1—a+Sa(DWD Hlyllp (11)

The echo state property bound is equivalent to:

inf[1—a+S6(DWD )] <1< 1—a+S inf [6(DWD™)
DeF DeF
<1
& S inf [6(DWD™ Y] < a
DeF
(12)

where inf represents the infimum.
The inf_[&(DWD_l)] has an exact value if the W is a

DeF
normal matrix [26]:

inf [6(DWD™ Y] = g(W)
DeF

13)

where the 4 is the maximum structured singular value.

In general, 0 < a < 1 and S, u(W) > 0. The tighter bound
of echo state property with universality for the leaky integrator
ESN is:

0<Su(W)<a <1 (14)
B. Composite Reservoir Activation Function

The most frequent activation functions in the ESN are the
sigmoid and the hyperbolic tangent (tanh) functions, but they
limit the model performance to a certain extent. Although the
ReLU [29], Swish [30], and wavelet [31] functions are alter-
natives, they do not perform well in this model (the analysis is
shown in Section V-C). The reason is that they are designed for
ANNs trained by the BP algorithm, and convenience for the
derivative is one of the crucial considerations. The training
of the ESN is just a linear regression and does not involve
the reservoir. Therefore, reservoir activation function can be
enhanced without regard for complexity. A smooth composite

function is proposed:
f(x) = x[tanh(ax) + bx]/7n (15)

where a, b € RT are control parameters.
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Fig. 1. Graph of the composite function.

The function graph is shown in Fig. 1, and the control
parameter b has a more considerable influence on the curve
shape. The tighter echo state property bound relates to the
reservoir W, the leaky rate a, and the activation function f(e).
The Lipshitz constant S is the maximum value of the reservoir
activation function’s derivative f’(-):

f'(x) = [tanh(ax) + br /7 — [ax(tanh®(ax) — )]/ (16)
The limits of the f”(x) can easily be solved: liT flix) =
X—>1T00
b+ 1/ and lim f/(x) = b — 1/x. However, the f’'(x)
X—>—0Q
is nonmonotonic, as shown in Fig. 1. Its extremum values,

i.e., zero-crossing points of the second derivative f’'(x),
should be considered.

" (x) = [2a(ax tanh(ax) — 1)(tanh?(ax) — D)/z  (17)

The zero-crossing points are x values at ax tanh(ax) = 1,
which is solved as ax ~ 1.20. The extremum values of the
f'(x) could easily be computed: b &+ 1.20/x . Based on this,
the Lipshitz constant § is:

S=b+120/7 (18)
C. Reservoir Structure Design

A simple reservoir structure is designed in this section
to obtain an exact maximum structured singular value and
abundant dynamic characteristics.

Suppose W,—1 is a matrix with the spectral radius p = 1.
Its eigenvalues distribute in a unit circle around the origin at
the complex plane and are symmetric against the real axis:

AWy=1) = {A1+ Ayi, A1 — Ayi, A2, A3+ Aszi, A3— Az, - -}

(19)
There is a normal matrix:
21 —A; O 0 0 T
A A1 0 0 0
- 0 0 A 0 0
Wo=t=10 0 0 13 —A; (20)

0 0 0 A3 A3

The normal matrix szl has the same eigenvalues as
the W,—1. The most points in szl appear in pairs, so it
is described as a decoupling matrix. Reservoirs with the
same eigenvalues have a similar performance [25]; therefore,
the reservoir structure design is transformed as eigenvalues
distributing.

Suppose the size of the W,—1 is N x N, so N sets of points
distributing uniformly in the unit circle at the complex plane
are generated for abundant dynamic characteristics. A square
area around the origin with the boundary length of 2 is
introduced as the auxiliary reference. The number of points
in the square area is 4N /x, so the number of points in every
edge is 2 (/N/x). It is rounded up as 2 [ /N/x | to guarantee
the symmetry and enough points for subsequent selection,
then a square area with 4 [ /N/x —|2 points is obtained, where
the [e] represents rounding up. Pairs of points with magni-
tudes exceeding one are rejected firstly. The points near the
imaginary axis are rejected then until the number of the rest
points is N.

In particular, the number of points in the second rejection
is an odd number when the N is an odd number, which will
destroy the symmetry of the rest points. Although a normal
matrix can still be obtained by re-decoupling, the N is usually
set as an even number for simplicity. Eigenvalues (N = 100)
acquired by this method are shown in Fig. 2.

Suppose the matrix with the designed eigenvalues is szl,
the reservoir can be finally built based on (14):

Res =mu - Wy—1/jt(W,=1) 20
where mu is the parameter that controls the maximum struc-
tured singular value of the reservoir.

The Algorithm shows the design of the reservoir structure.

D. Structure of the IESN

On these bases, the structure of the IESN is shown in Fig.3.
The input matrix is generated randomly, and the reservoir is
designed by the Algorithm and activated by the (15). Then, the
model could be applied through (3), (4), and (6). The signal is
sent into the reservoir after the input matrix, and it is iterated
based on the time step. The internal state could reach stability
by certain iterations because of the echo state property. The
trained output matrix could finally transform the internal state
as the expected result.
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Algorithm : Design the Reservoir Structure

Input: Reservoir size N and the maximum structured singular
value mu.

Qutput: Reservoir Res.

1: Generate 4 [/N/x —|2 points uniformly in a square area,
which is around

the origin with the boundary length of 2 at the complex plane.
2: If the magnitude of a point > 1 do

3: Reject the point;

4. End

5. If the number of the rest points > N do

6. Reject the point near the imaginary axis in pairs until
the rest number is N;

7. End

8. Generate a matrix szl with the rest points by (20).

9. Generate the reservoir Res by (21).

10. Return Res.

Input matrix
Wi

| > P @ -
|O| O,
I O ” Rese;lr/voir O;‘Egut

Internal state

x(?)
Fig. 3. Structure of the IESN.

IV. EXPERIMENT AND RESULT

The proposed IESN is tested by six classical benchmarks
and a set of engine vibration signals in this section.

A. Testing Cases
1) Nonlinear Auto-Regressive Moving Average (NARMA):

The NARMA is usually used to describe a nonlinear time
invariable system. A 10-order NARMA is built:

Y(t+ 1) = 0.3Y () + 0.05Y (t) Z?ZO Y — i)

+1.5X(—9X (1) +0.1 (22)

where X (¢) is a random number between 0 and 0.5.

In this case, the Y (¢) is used to predict the Y (z + 10).

2) Mackey and Glass Time Series: It is a nonlinear delay
differential equation. The used form is:

dX/dt = (02X (1 — 1))/ (1 +x10 - T)) —0.1X(1) (23)

where 7 = 17.

In this case, the X (¢) is used to predict the X (¢t + 3).

3) Henon Map: The Henon map is a classical chaotic
attractor:

(24)

Xt+1)=1-14X*(1)+Y ()
Y(t+1)=03X({®)

In this case, the initial system values are set as X(0) = 0
and Y (0) = 0. The X (r) and the Y (¢) are used to predict the
X@t+1).

4) Lorenz Attractor: The Lorenz attractor is the fractal
structure of the Lorenz oscillator’s long-term behavior. The
differential equations are:

dX/dt = 10(Y — X)

dy/dt =28X —-Y — XZ (25)
dzZ/dt = XY — (8/3)Z
In this case, the initial system values are set as X (0) = —1,

Y(0) =0, and Z(0) = 1. The Y (t —20), Y (¢ — 10), and Y (¢)
are used to predict the X (r 4+ 10).

5) Rossler Attractor: The Rossler attractor is a simple non-
linear ordinary differential equation:

dX/dt = —(Y + Z)

dY/dt = X +0.1Y (26)
dzZ/dt =0.1+ Z(X — 14)
In this case, the initial system values are set as X (0) = —1,

Y(0) =0, and Z(0) = 1. The Y(t — 10), Y(t — 5), and Y (¢)
are used to predict the X (¢ + 5).

6) Chen Attractor: The Chen attractor has more complex
topology and dynamic characteristics compared with the
Lorenz attractor. The typical form is:

dX/dt = 40(Y — X)
dY/dt = 28Y — 12X — XZ
dZ/dt = XY —3Z

27)

This case is tested in the same manner as the Rossler
attractor case.

Actual time series are often difficult to collect, so the per-
formance of the model with limited training data is analyzed.
In the above six benchmarks, 2000 samples are generated,
in which 1000 samples are taken as the training dataset, and
the rest are the testing dataset.

7) Engine Vibration: The engine is a highly integrated
mechanical system with many vibration sources and com-
plex transfer functions. The block vibration signals contain
rich information about the engine’s performance and can
reflect its health condition [32]. Therefore, vibration predic-
tion for engine faults monitoring is a promising engineering
application.

A four-cylinder gasoline engine tested in the knock condi-
tion, which is a common abnormal combustion phenomenon.
The engine is rigidly fixed on a horizontal platform and
controlled by an electric dynamometer through a carbon-fiber
drive shaft, as shown in Fig. 4(a). The sensor set on the engine
block is the piezoelectric accelerometer ICP 621B40 produced
by PCB Piezotronics, Inc., as shown in Fig. 4(b). The knock
condition is realized by advancing the ignition timing. Con-
sidering the knock feature frequency is up to 25 kHz, the
sampling rate is 51200 points per second [32].

Two vibration signals near the third cylinder at 1600r/min
are selected from different cycles to train and test the IESN
separately for practicability. The signal during an engine cycle
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Fig. 4. Test bench. (a) Testing engine. (b) Acceleration sensor.
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Fig. 5. Engine vibration acceleration signal. (a) Time-domain signal.
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contains 3840 samples. The knock can be detected when the
signal covers the combustion period. Therefore, the 1st-2000th
samples in the first signal are used to train the model, and
the 1501st-2000th samples in the second one are used for
testing. The time and frequency domains of the testing signal
are shown in Fig. 5, where g = 9.8m/s?.

In this case, time-domain signals Y (¢ — 40), Y (t — 30),
Y (t—20), Y (t—10), and Y (¢) are used to predict the Y (¢+10).

B. Testing Results

Seven cases mentioned above are employed to test the IESN.
Several widely used models, including the SVM, the MLP, the
ELM, the ENN, the LSTM, the GRU, the original ESN, the
IP-ESN, and the GESN, are tested for comparisons. Consid-
ering decomposition algorithms are effective in the complex
signal analysis, three optimized RNN models, the TVF-EMD-
ENN, the EEMD-LSTM, and the VMD-GRU, are also tested.
The accuracy is measured by normalized root mean square
error (NRMSE):

NRMSE — \/ (Z:l_ 1 ( Ytpredicted _ Ytexpected)) / (I’l . Var(Yexpected))
(28)

where n and var(Y®*Pec®d) represent the length and the vari-
ance of the expected output, respectively.

The reservoir activation function of the IESN is f(x) =
x[tanh(0.1x) 4+ 7 ]/7, whose Lipshitz constant is § ~ 1.38.
Therefore, the structured singular value of the reservoir is set
as mu =0.6 and the leaky rate as a = 0.928 (1.38 x0.64+0.1)
to run the model at the edge of chaos. The reservoir size is
set as N = 100. The SVR takes a radial basis function as
the kernel. The MLP, the ENN, the LSTM, and the GRU all
have three-layers structures. The VMD decomposes signals
into three components. The TVF-EMD and EEMD decompose
signals by stop conditions, and the results are also restructured
into three components separately as inputs. The ELM has a
traditional single hidden layer structure [7]. The activation
function in the original ESN is the tanh, and the reservoir is
generated randomly. The hyperparameters are set as p = 0.9
and N = 100 based on (7). In the IP-ESN, the reservoir is
further optimized by the IP algorithm and the output matrix
is solved by ridge regression. In the GESN, a sub-reservoir of
10x 10 is taken to generate the reservoir. The first 100 samples
are used to wash out initial conditions in the four kinds of
ESN models. Considering that ANNs are sensitive to initial
weights, the average values of ten runs are taken as the final
results of these models (the significance analysis is shown in
Section V-A).

1) Testing Results of Benchmarks: The testing results of six
benchmarks mentioned above are listed in Table 1.

As shown in Table I, the IESN has an obvious advantage,
which shows the optimizations are effective. Three optimized
RNN models obtain better results than the original ones
in most cases, indicating that decomposition algorithms can
improve the complex time series prediction to a certain extent.
However, the Henon map case uses two different variables as
the input, and decomposition algorithms destroy their internal
relation. Therefore, the decomposition algorithm is not suitable
for all applications. The IP-ESN obtains the second accuracies
only to the IESN except in the Henon map case, which shows
that training the ESN by the heuristic algorithm is a potential
method. Nevertheless, the IESN trained by linear regression
has higher efficiency and is more practical.

2) Testing Results of Vibration Signal: The knock is usually
detected by the energy level of the high-frequency compo-
nent (6-25 kHz) in the vibration signal, so the frequency-
domain prediction is equally vital in this case. However, the
time series prediction result and its Fourier spectra are not
satisfying, as shown in Fig. 6. The NRMSEs are 1.05 in time-
domain and 1.04 in frequency-domain, respectively. The high-
frequency components in 20-25 kHz and 8-10 kHz are almost
entirely lost. Especially the energy differences of components
in 20-25 kHz are significant.

The common shortcoming of ANNs in high-frequency sig-
nal prediction is the main reason, so an amplitude-frequency
separation based on the Hilbert transform is employed. Sup-
pose the input signal is u(¢), and its analytic signal can be
solved by the Hilbert transform:

us(t) = %p.v./ tu(v) do

R

(29)

where p. v. represents the Cauchy principal value.
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TABLE |
NRMSES OF BENCHMARK TESTING RESULTS

Models NARMA Mackey-Glass Henon map Lorenz attractor Chen attractor Rossler attractor
SVM 1.01 7.36X 10" 1.04X 10! 3.79X 10" 5.22X107? 1.75X10?
MLP 8.72X 107! 8.01X 10! 1.20X 102 5.12X 10" 3.01X10? 8.01X 10"
ELM 1.05 7.30X 10" 7.82X 107 2.83X 10" 1.97X 10" 1.12X 10"
ENN 1.00 7.32X 10" 2.61X10? 2.63X 10" 1.25X 10" 3.12X10?
TVF-EMD-ENN 9.35X10°! 2.89X 10! 1.02 2.30X 10! 1.18X 10" 2.58X 10"
LSTM 1.05 1.16X10! 8.78 X 10 3.67X10" 2.14X10" 1.82X 10!
EEMD-LSTM 9.72X10"! 1.03X 10! 1.04 3.04X 10" 3.52X10"! 1.56X 10!
GRU 1.11 2.11X107! 4.06X10? 1.63X10"! 8.33X10? 7.64 X102
VMD-GRU 9.17X10"! 2.07X10"! 1.05 1.00X 10! 2.34X10" 3.29X10?
Original ESN 9.22X 10! 1.17X 10" 9.41X107? 1.65X 10" 1.30X 10! 5.43X10?
IP-ESN 4.42X10" 1.54X 10" 9.94X 1072 2.63X107 1.85X1072 5.15X107
GESN 6.20x10°" 7.60x10 9.09x10* 1.64x10"! 1.22x10"! 5.33x107
IESN 1.90 X107 3.19X10? 2.02X10° 1.28 X107 1.30 X107 1.07 X10°
40 25
— Expected [ _ Expected TABLE Il
220 — — Predicted | 220 — — predicted NRMSES OF VIBRATION SIGNAL TESTING RESULTS
Z o0
gﬂo Models Amplitude Frequency Average
-40 .
0 Timc%]O“s) 8 0 > Fréguency (lkSHz) » SVM 142 1.31 1.37
MLP 1.23 1.11 1.08
(a) (b)
ELM 1.06 1.24 1.14
Fig. 6. Vibration signal prediction result. (a) Time-domain.
(b) Frequency-domain. ENN L17 1.22 L19
TVF-EMD-ENN 0.94 1.17 1.06
LST™M 1.14 1.12 1.13
The u4(t) is a complex signal wbose real apd imaginary EEMD-LSTM 0.86 111 0.99
components are u’ and u' , respectively. The instantaneous
. . A A X GRU 1.29 1.20 1.24
amplitude is the magnitude of u4 (¢):
VMD-GRU 0.94 1.17 1.06
Ampins =/ (')? + (u')? (30)  Original ESN 1.15 1.01 1.08
. . IP-ESN 1.11 1.13 1.12
The instantaneous phase is:
GESN 0.81 1.05 0.93
Phains = arctan(u'y /u’y) (31)  1EsN 0.63 0.51 0.57
where arctan is the arctangent function.
The instantaneous frequency is: v Expocted| > Expected
S - — Predicted| 220 — — Predicted
Freins = d(Phains)/dt (32) £0
E-20
The instantaneous amplitude and the instantaneous fre- ~10g : - L ook e -
quency are predicted by two models separately. Then, the time Time (10°%) Frequency (kHz)
series can be obtained by: (a) (b)

uA(t) = Amping - cos(Phaing) (33)

where the instantaneous phase is the integral of instantaneous
frequency, and the input signal could provide the constant
term.

Based on the amplitude-frequency separation, the predicted
vibration is shown in Fig. 7, and NRMSEs are listed in
Table II. The accuracy of the result is improved significantly,
and the high-frequency components remain complete. It shows

Fig. 7. Vibration signal prediction result by amplitude-frequency sepa-
ration. (a) Time-domain. (b) Frequency-domain.

the approach can predict high-frequency vibration of the
engine to detect the knock.

The testing results of the other models are also listed
in Table II. The decomposition algorithm can improve the
accuracy in amplitude, but the frequency is still unsatisfactory.
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TABLE Il TABLE IV
SIGNIFICANCE ANALYSIS BETWEEN THE IESN TESTING RESULTS OF DIFFERENT ACTIVATION FUNCTIONS
AND THE OTHER MODELS
Activation functions NRMSE
Models p values Models p values Tanh 376X 10!
SVM 1.59x10°® EEMD-LSTM  5.33x10* Sigmoid 479X 10"
MLP 2.02x107 GRU 3.12x10M! ReLU 1.09
ELM 9.92x107* VMD-GRU 8.92x107 Leaky ReLU 112
ENN 3.39x10” Original ESN  1.13x10°!° Swish 407X 107
TVE-EMD-ENN  2.89x10" IP-ESN 3.05x10° Mexican hat wavelet 4.47X10"
LSTM 2.75x10°13 GESN 6.38x107"° Linear 793% 10"
Proposed composite function 1.90 X107

Compared with them, the IESN still obtains the highest
accuracy, which means it has a certain prospect in engine
health monitoring.

V. ANALYSES AND DISCUSSION
The statistical hypothesis test, echo state property bound,
reservoir activation function, reservoir structure, and training

data size are discussed further in this section based on the
NARMA case shown in Section IV-A.1.

A. Significance Analysis

As mentioned above, the average values of ten runs are
taken as the final results of these models; therefore, the t-test
is employed to analyze the significance of the IESN result.
The p values between the IESN and the other nine models are
listed in Table III. The small p values verify the significant
difference, which shows the IESN has stable and accurate
performance.

B. Bound of the Echo State Property

An IESN used the original echo state property bound,
ie., (7), is tested, in which the hyperparameter is set as
p = 0.9. The prediction result is NRMSE = 2.75 x 107!
Compared with it, the complete IESN has a higher accuracy
of NRMSE = 1.90 x 10~!, which shows the superiority of
the universal tighter echo state property bound derived in this

paper.

C. Reservoir Activation Function
The IESN models with several other reservoir activation
functions are tested. The alternative functions are as follows:
The tanh function: f(x) = (¢ —e™")/(e* + 7).
The sigmoid function: f(x) = 1/(1 +e™%).
The ReL.U function: f(x) = max(0, x).

The leaky ReL.U function: f(x) = * ?f x>0 , where

Ax ifx <0

A =0.1.
The Swish function: f(x) = x(1 + e~#*), where = 0.2.
The Mexican hat wavelet function: f(x) = (1 — xz)e’xz/z.
Besides, the linear function f(x) = x is also analyzed as

the baseline. The Lipshitz constants of these functions are

10— 10 . 10
io‘sxxx.-“xea ‘XX*& NE 05
5 : ] S
£00 £00 } % 200
< < il <

£ k| o x £
05 05 = 05

N

140505705 10 9905 00 05 10 4005 00 05 10
Real Real Real

(a) (b) (c)

Fig. 8. Eigenvalues distributions in the complex plane. (a) Single circle.
(b) Multiple concentric circles. (c) X-shape.

TABLE V
TESTING RESULTS OF DIFFERENT EIGENVALUES DISTRIBUTIONS

Eigenvalues Single Cl(\)/fllil;ﬁlgc X-shape Uniform
distribution circle circles P distribution
NRMSE 3.26 X 10! 2.49X10! 3.12X10! 1.90 X101

solved by (16)-(18) to run these models at the edge of chaos.
Prediction results are listed in Table IV.

The IESN with the proposed composite function obtains the
highest accuracy, which shows the necessity of the research
on the reservoir activation function. In addition, the results
of the models with the ReL.U and leaky ReL.U functions are
unsatisfactory and even lower than the linear function. It can
be deduced that the smooth activation function is beneficial
for the IESN.

D. Reservoir Structure

The reservoir should be a normal matrix to obtain the exact
maximum structured singular value. Several other possible
distribution forms of reservoir eigenvalues in the complex
plane are analyzed: the single circle, the multiple concentric
circles, and the X-shape, as shown in Fig. 8.

The prediction results of the IESN models with these
reservoirs are listed in Table V. The uniform distribu-
tion adopted in this paper has the best performance. The
other distributions could be ranked in descending order by
NRMSEs: the multiple concentric circles, the X-shape, and
the single circle. It confirms that varied reservoir eigenval-
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TABLE VI
NRMSES OF TESTING RESULTS BASED ON
DIFFERENT TRAINING DATA SIZE

Training data size 2000 5000 10000

SVM 1.00 9.78X10! 9.52X10"
MLP 8.69X 10! 8.65X 10! 8.51X10!
ELM 1.02 1.01 1.00

ENN 9.72X 10" 9.08X 10! 9.06X 10!
TVF-EMD-ENN 9.23X10’ 9.07X 10! 8.97X 10!
LSTM 1.01 7.74X 10! 7.51X10"
EEMD-LSTM 8.25X 10" 7.62X10! 7.53X10!
GRU 9.99X 10! 8.23X 10! 7.66X 10!
VMD-GRU 8.52X 10 7.64X 10! 7.42X10"
Original ESN 8.32X10 5.92X10 4.94X 10!
IP-ESN 4.13X 10" 3.85X10 3.23X10
GESN 5.14X10! 4.22X10"! 4.09x 10!
IESN 1.62 X107 1.52x107 1.39x107

ues can obtain abundant dynamic characteristics to improve
prediction accuracy and the design of uniform distribution is
reasonable.

E. Training Data Size

In the NARMA case, the training and testing datasets
contain 1000 samples, respectively. The training data size is
adjusted as 2000, 5000, and 10000 to analyze its influence on
the prediction accuracy. The NRMSEs of testing results based
on different models are listed in Table VI. As the training
data size increases, the prediction accuracies of all the models
also increase. Nevertheless, the proposed IESN has the best
results with different conditions, which shows the model has
generality, and its accuracy does not benefit from exceptional
testing cases.

VI. CONCLUSION AND OUTLOOK

An IESN is researched in this paper to predict time series
accurately and efficiently. A tighter bound of echo state
property is deduced firstly for a more precise chaotic edge.
A smooth composite activation function is designed to enhance
the ESN, and then the exact bound is solved. Finally, a reser-
voir, whose eigenvalues distribute uniformly in the complex
plane, is developed. Compared with several models, the IESN
obtains the most accurate results in six benchmarks and a set
of vibration signals.

The reservoir is built as a normal matrix for exact structured
singular values because of the echo state property bound.
Besides, the decoupling places eigenvalues only near the
diagonal of the matrix, which results in high sparsity in the
large-size matrix. These limit the development of the reservoir,
and a more general structure with controllable sparsity will be
researched in future work.
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